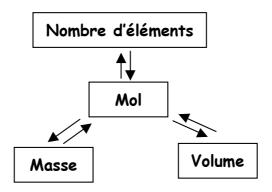
# H.S.2.2.E Les grandeurs caractéristiques pour établir la composition d'une solution.

# I) La mole :

| utiliser un t      | •                     |                                       |            | nts chimiques (quelques<br>né la taille de ceux-ci (p | grammes), il faudrait en<br>Ilusieurs milliards de |
|--------------------|-----------------------|---------------------------------------|------------|-------------------------------------------------------|----------------------------------------------------|
| milliards).        |                       |                                       |            |                                                       |                                                    |
| Une unité de       | e quantité de         | matiè                                 | re a été c | réée,                                                 | dont le symbole est :                              |
| Une mole de        | : matière corr        | respon                                | d donc à   | une quantité de matière                               | e qui peut être manipulée                          |
| lors d'une ex      | kpérience en e        | chimie                                | . Cette m  | ole de matière corresp                                | ond à un nombre ${\mathcal N}$                     |
|                    | e molécules ou        |                                       |            | ,                                                     |                                                    |
| •                  |                       |                                       |            | éléments                                              |                                                    |
| Ce nombre√         | V que l'on a a        | nnelé                                 |            | corres                                                | spond au nombre d'atomes                           |
| de carbone         | contenus dans         | , , , , , , , , , , , , , , , , , , , |            | de carbone, au nombre                                 | d'atames d'hydrogène                               |
|                    |                       |                                       |            | de car bone, da nombre                                | a aromes a riyar ogene                             |
| contenus aa        | nsg d'hy              | raroge                                | ne eic     |                                                       |                                                    |
| TT\ 44             |                       |                                       |            |                                                       |                                                    |
| <u>11) Wo</u>      | <u>asse molaire :</u> |                                       |            |                                                       |                                                    |
|                    |                       |                                       |            |                                                       |                                                    |
| • •                |                       | la ma                                 | sse en gro | ammes d'une mole d'ent                                | ité chimique. Le symbole de                        |
| la masse mo        | laire est M.          |                                       |            |                                                       |                                                    |
|                    |                       |                                       |            |                                                       |                                                    |
| <u>1)</u>          | la masse mo           | <u>laire a</u>                        | tomique :  |                                                       |                                                    |
| La masse mo        | olaire atomiqu        | ie est                                | la masse   | d'une mole d'atomes de                                | l'élément chimique                                 |
| considéré.         | ·                     |                                       |            |                                                       | ·                                                  |
| En effet ch        | laque atome c         | le la cl                              | assificati | ion périodique des élém                               | ents est caractérisé par                           |
|                    | •                     |                                       |            | •                                                     | nombre A), correspond à la                         |
|                    | mole d'atome          |                                       |            |                                                       | ionibi o 71), con respond a la                     |
|                    |                       |                                       |            |                                                       |                                                    |
| <u> Exemples :</u> | L'hydrogène           | $_{1}^{-}H$                           | 6,0        | 02.10 <sup>23</sup> atomes d'hydro                    | gène pèsentg.                                      |
|                    |                       |                                       | M          | (H) =g/mol.                                           |                                                    |
|                    | Le carbone            | $^{12}C$                              |            | 00.4023                                               |                                                    |
|                    | Le carbone            | 6 C                                   |            | 02.10 <sup>23</sup> atomes de carb                    |                                                    |
|                    |                       |                                       |            | (C) =g/mol                                            |                                                    |
|                    | L'Oxygène             | $^{16}_{8}O$                          | 6.0        | 02.10 <sup>23</sup> atomes d'oxygè                    | ne nèsent a                                        |
|                    | z onygone             | Ü                                     |            | (O) =g/mol                                            |                                                    |
| Evanaiaa : A       | مامام مامام           | اعمماد                                |            | _                                                     |                                                    |
|                    |                       | .ια5511                               | ication pe | modique des elements,                                 | donner la masse molaire                            |
| atomique de        |                       |                                       |            |                                                       | 44.7.415                                           |
| M(Be) =            |                       |                                       | M(Mg) =    |                                                       | M(AI) =                                            |
|                    |                       |                                       |            |                                                       |                                                    |
| M(Fe) =            |                       |                                       | M(Zn) =    | ***************************************               | M(Br) =                                            |
|                    |                       |                                       |            |                                                       |                                                    |

# 2) La masse molaire ionique :

Un ion est un atome qui a perdu ou gagné un ou plusieurs électrons. La masse d'un atome correspond à la masse du noyau car l'électron a une masse négligeable à coté de la masse du proton ou du neutron. On peut donc dire que la masse molaire de l'ion correspond à celle de l'atome dont il est issu.


| $M(CI) = \dots$                                  | g/mol                        | M(Cl <sup>-</sup> ) =                                                                 | g/mol |                |             |   |
|--------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|-------|----------------|-------------|---|
| M(AI) =                                          | g/mol                        | $M(Cl^{-}) = \underline{\qquad \qquad }$<br>$M(Al^{3+}) = \underline{\qquad \qquad }$ |       | g/mol.         |             |   |
| <u>3) l</u>                                      | a masse molair               | e moléculaire :                                                                       |       |                |             |   |
| La masse mole                                    | aire moléculair              | e est la masse                                                                        |       |                | du          | J |
| corps pur con                                    | sidéré. Elle es <sup>.</sup> | t égale en gramm                                                                      | es à  |                |             |   |
|                                                  |                              | ents qui compose                                                                      |       |                |             |   |
| Exemple: Le atomes d'oxy                         | •                            | e CO2 est compos                                                                      | sé d' | atome de car   | bone et de  |   |
| •                                                | _                            | (O) = 16 g/mol.                                                                       |       |                |             |   |
|                                                  |                              | ) + (                                                                                 | ) =   | +              | =           |   |
| g/mol.                                           |                              |                                                                                       |       |                |             |   |
|                                                  |                              | es molaires moléc<br>ériodique des élé                                                |       | corps purs sui | vants (Vous |   |
| M(CH <sub>4</sub> )=                             |                              |                                                                                       |       |                |             |   |
| M(O <sub>2</sub> ) =                             |                              |                                                                                       |       |                |             |   |
| M(H <sub>2</sub> O) =                            |                              |                                                                                       |       |                |             |   |
| M(H <sub>2</sub> SO <sub>4</sub> ) = <sub></sub> |                              |                                                                                       |       |                |             |   |

# III) Le volume molaire (uniquement pour les gaz) :

Pour les gaz, on a déterminé que le volume occupé par une mole de gaz était dans les conditions normales de pression (76 cm de mercure) et de température ( $0^{\circ}$  C.) 22,4 litres. Le volume molaire des gaz dépend des conditions de pression et de température.

| Température | Pression              | Volume molaire |
|-------------|-----------------------|----------------|
| (°C)        | (Pa)                  | (L/mol)        |
| 0           | 1.10 <sup>5</sup>     | 22,7           |
| 0           | 1,013.10 <sup>5</sup> | 22,4           |
| 20          | 1.10 <sup>5</sup>     | 24,0           |
| 100         | 1.10 <sup>5</sup>     | 31,0           |

On résume la relation existant entre la mole, le nombre d'éléments, la masse et le volume de la façon suivante :



On peut compléter un tableau de proportionnalité par flèche. Ce qui signifie que si je souhaite obtenir un volume correspondant à la masse. Il faut d'abord déterminer le nombre de moles correspondant à la masse puis transcrire ce nombre de moles en volume. Il suffit de compter les étapes (nombre de flèches) pour établir le ou les tableaux de proportionnalité. Dans le cas précédent Masse  $\rightarrow$  Mol  $\rightarrow$  Volume, 2 flèches donc 2 tableaux de proportionnalité.



Exercice: Déterminer le nombre de moles d'atomes contenues dans 167,4 g de fer Fe. M(Fe) = 55,8 g/mol

 $\underline{\mathsf{Exercice}} : \mathsf{D\acute{e}terminer} \ \mathsf{le} \ \mathsf{nombre} \ \mathsf{d'atomes} \ \mathsf{contenus} \ \mathsf{dans} \ \mathsf{1} \ \mathsf{g} \ \mathsf{de} \ \mathsf{fer}.$ 

Exercice : Déterminer le volume occupé par  $8\,g$  de dioxygène  $O_2$  dans les conditions normales de pression et de température. Le volume molaire est  $22,4\,L/mol$ .

Exercice : Le réchaud à butane.



Un réchaud fonctionne au gaz butane. La molécule de butane est constituée de 4 atomes de carbone et de 10 atomes d'hydrogène.

- a) Donner la formule brute du butane.
- b) Calculer la masse molaire moléculaire du butane.
- c) Le réchaud consomme 80 g de butane par heure de fonctionnement. Calculer le nombre de moles de butane consommées en 1 heure (arrondir à 0,1 mol).
- d) Calculer le volume de gaz consommé en 1 h sachant que le volume molaire est ici de 24 L / Mol.
- e) La bouteille contient 190 g de butane. Calculer sa durée d'utilisation dans les mêmes conditions. Donner le résultat en h. min. s.

Exercice: L'aspirine.



L'acide acétylsalicylique ou aspirine est un analgésique (qui atténue ou supprime la sensibilité à la douleur). Un comprimé d'aspirine contient 500 mg d'aspirine de formule  $C_9H_8O_4$ .

- a) Calculer la masse molaire moléculaire de l'aspirine.
- b) Calculer la quantité de matière contenu dans un comprimé ( c'est-à-dire le nombre de moles, arrondir à  $10^{-4}$ ).

c) Calculer le nombre de molécules d'aspirine contenu dans ce comprimé.

#### IV) Concentration massique et concentration molaire :

## 1) Concentration massique:

La concentration massique  $C_m$  d'une espèce chimique en solution est la masse dissoute m de cette espèce dans un litre de solution.

$$C_{\rm m} = \frac{m}{V}$$

 $C_m$  est en g/L ; m est en g; V est en L

Exercice : Calculer la concentration massique si on dissout 1,2 g d'acide éthanoïque (acide acétique) CH<sub>3</sub>COOH dans 200 cL de solution (attention aux unités).



## 2) Concentration molaire:

La concentration molaire C d'une espèce chimique en solution est la quantité de matière introduite n de cette espèce dans un litre de solution.

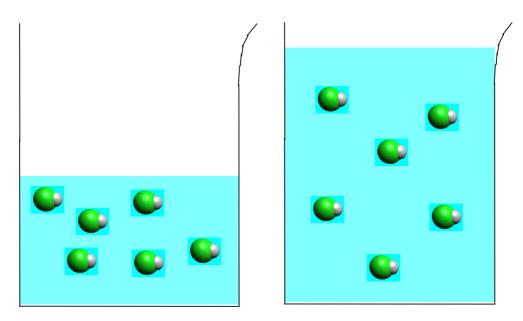
$$C = \frac{n}{V}$$

Cest en mol/L; n est en mol; V est en L.

Exercice: On obtient une solution aqueuse d'hydroxyde de sodium (soude) en introduisant 2,0 g de NaOH<sub>(s)</sub> dans 500 mL d'eau distillée.

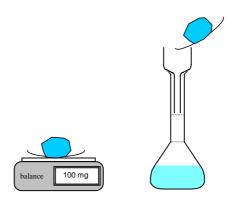
a) Calculer la masse molaire de l'hydroxyde de sodium. En déduire la quantité introduite (nombre de moles) dans les 500 mL.

(M(Na) = 23 g/mol; M(O) = 16 g/mol; M(H) = 1 g/mol)


b) Trouver la concentration molaire de cette solution.

## V) Préparation d'une solution de concentration donnée :

On peut préparer une solution de concentration donnée par :


- dilution:

Au cours d'une dilution la quantité de matière (nombre de moles) d'une solution reste constante, c'est le volume de solvant qui augmente  $n = C_1 \cdot V_1 = C_2 \cdot V_2$ 



### dissolution :

Après calcul de la masse m de soluté à dissoudre, on ajoute le soluté et on agite.



Voir HS22E TP N°1 Comment préparer une solution aqueuse de concentration donnée par dissolution ?

Voir HS22E TP N°2 Comment préparer une solution aqueuse de concentration donnée par dilution ?