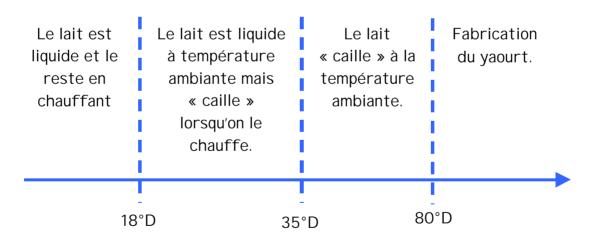
La mole

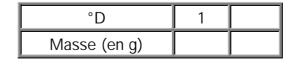
<u>Exercice N°1</u>: En utilisant les masses molaires atomiques, calculer les masses molaires moléculaires des éléments suivants en respectant l'exemple: (Attention chaque atome de la molécule sera pris dans l'ordre d'apparition, on multiplie le nombre par la masse et non pas l'inverse.)

M(H) = 1 g/mol	M(O) = 16 g/mol	M(C) = 12 g/mol
M(Cu) = 63,5 g/mol	M(S) = 32 g/mol	M(Na) = 23 g/mol

Exemple: $M(H_2O) = (2 \times 1) + (1 \times 16) = 2 + 16 = 18 \text{ g/mol}.$


$$M(Cu^{2+},SO_4^{2-}) =$$

$$M(Na^+,OH^-) =$$


$$M(C_4H_{10}) =$$

$$M(C_3H_6O_3) =$$

<u>Exercice N°2</u>: L'état de fraicheur du lait se mesure en degré Dornic (°D). Un degré Dornic (1°D) correspond à la présence de 0,1 gramme d'acide lactique par litre de lait. Selon l'état de fraîcheur du lait, on observe les phénomènes suivants:

Du lait laissé à l'air libre et à température ambiante, contient 2,5 g d'acide lactique. 1) Calculer le degré Dornic D_n correspondant:

2) Ce lait est-il liquide à la température ambiante ?
3) Que se passe-t-il si on le chauffe ? (Mette V pour "vrai" et F pour "Faux")> Il ne se passe rien:> Il "caille":> Il s'est transformé en yaourt:> Il s'est transformé en yaourt:> Il s'est transformé en yaourt: M(H) = 1 g/mol M(O) = 16 g/mol M(C) = 12 g/mol
$M(C_3H_6O_3) = g/mol.$
5) Du lait a un degré Dornic $D_n = $
$m_1 = \boxed{} g.$
b) Calculer le nombre de moles n _I d'acide lactique par litre de lait (arrondi au millième). Moles 1 Masse (en g)
$n_l = $ mol.
Exercice N°3: Pour déterminer l'indice d'octane de l'essence des automobiles, les techniciens des groupes pétroliers effectuent des comparaisons avec un carburant expérimental composé uniquement d'octane (C_8H_{18}) et d'heptane (C_7H_{16}) .
1) Déterminer la quantité de matière (nombre de moles) contenue dans 2 850 g d'octane. $M(C) = 12$ g/mol; $M(H) = 1$ g/mol.
Moles d'octane 1
Masse (en g)
2) Déterminer la quantité de matière (nombre de moles) contenue dans 150 g d'heptane. M(C) = 12 g/mol ; M(H) = 1 g/mol.
Moles d'heptane 1
Masse (en g)

Exercice N°4: Auréli		_			
carat est l'unité utilis	sée en joaillerie pour o	exprim	er la m	asse des pie	rres précieuses et
des métaux rares:					
1 carat = 200 mg.					
Un diamant est consti					
1) Calculer la masse el	n gramme du diamant	qu'Aur	élie rêv	ve d'acquérir	^ .
Masse =	g.				
2) Calculer la quantité	de matière (nombre	de mol	es) con	tenue dans o	ce diamant.
M(C) = 12 g/mol.					
	Moles de diama	nt	1		
	Masse (en g)				
3) Calculer	le nombre d'atomes d	le carb		ntenus dans	ce diamant.
	T	J,02X10			
—	loles de diamant		1		
N	ombre d'atomes				
<u>Données</u> : M(C) = 12 g 1) Calculer la quantité dans les conditions ou	e de matière (nombre	de mole			1,5 m³ de méthane
	Moles de métha	ne	1		
	(en)			
2) Calculer la masse m M(CH ₄) = g/m		métha	ne.		
3) Calculer la masse de 1,5 m ³ de méthane.					
	Moles de métha	ane	1		
	(en)		 	
	(CII	,			
4) Calculer la masse v molaire est 24 L. Doni Masse volumique • du	ner le résult <u>at à 10⁻² </u>		'L dans	les condition	ns ou le volume
5) La combustion com	plète d'une mole de m	néthane	e fourn	it 890 k J (K	iloioules), calculer
l'énergie fournie par					
	Moles de méthar		1		1
		\	'		
	(en	/ ∥			

Exercice $N^{\circ}6$: On peut considérer que l'air que l'on respire est un mélange composé, en volume, de 80 % de dioxygène (O_2) et de 20 % de diazote (N_2). Le volume de la salle de séjour de Julie est $V = 60 \text{ m}^3$.

<u>Données</u>: Volume molaire = 24 L/mol; M(N) = 14 g/mol; M(O) = 16 g/mol.

1) Calculer le volume de diazote contenu dans la salle de séjour.

 $V = 12 \text{ m}^3$

2) Calculer le nombre de moles de diazote contenu dans la pièce.

Moles	1	
(en)		

- 3) Calculer le volume de dioxygène contenu dans la salle de séjour. $V = 48 \text{ m}^3$
- 4) Calculer le nombre de moles de dioxygène contenu dans la pièce

Moles	1	
(en)		

5) Calculer la masse molaire moléculaire du dioxygène.

 $M(O_2) = 32 \text{ g/mol}.$

6) Calculer la masse de dioxygène contenue dans la pièce.

Moles	1	
(en)		