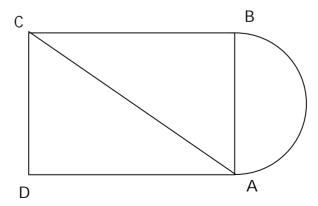

Partie Mathématiques :

Exercice N°1: (2,5 points)

Évolution de la population française de 1790 à 1993.

La population est donnée en millions d'habitants.


Population (millions d'habitants)

- 1) A l'aide du graphique ci-dessus indiquer :
 - a) La population française en 1851.
 - b) En quelle année la population française était-elle de 52,7 millions d'habitants?
- 2) Déterminer la période pendant laquelle la population française a diminué de 3 millions d'habitants.
- 3) Calculer l'augmentation de la population entre 1790 et 1914.
- 4) Calculer le nombre d'années nécessaires, après 1945, pour que la population augmente du même nombre de personnes que pendant la période de 1790 à 1914.

Exercice N°2: (2 points)

La salle de repas d'une crèche a la forme d'un rectangle prolongé d'un demi-disque.

AB = 4.20 m. BC = 5.60 m.

- 1) Calculer la longueur AC.
- 2) Calculer la tangente de l'angle BCA.
- 3) En déduire la mesure de l'angle BCA. Exprimer, en degré, ce résultat (arrondi à 0,1).
- 4) Calculer l'aire de la salle. Exprimer le résultat en m² arrondi à 0,01.

Rappel: Aire d'un rectangle de longueur L et de largeur I : L x I

Aire d'un disque de rayon R : $p \times R^2$.

ExerciceN°3: (2 points)

Pour l'achat de sa cuisine équipée, Mr Lepin reçoit la facture ci-dessous :

1) Compléter celle-ci. (€ est le symbole de l'euro)

2) Calculer le pourcentage de remise par rapport au prix brut H.T. (arrondir le résultat à 0,1).

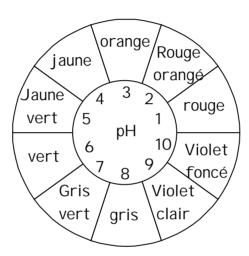
3) Calculer le coefficient multiplicateur qui permet de passer du prix brut H.T. au prix net T.T.C. à payer. (Réponse attendue avec 5 décimales)

Exercice N°4: (3,5 points)

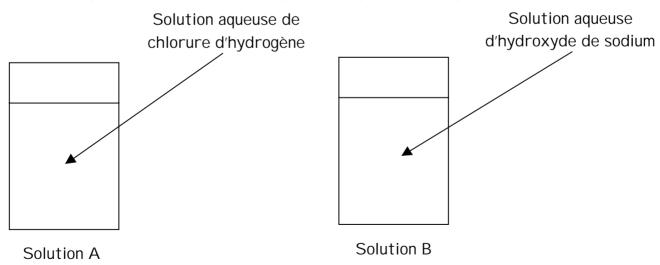
La consommation d'eau chargée en plomb peut provoquer des troubles su système cérébral en particulier chez l'enfant. On a étudié la concentration de plomb dans l'eau du robinet dans 390 logements de la région parisienne. Les résultats sont donnés dans le tableau suivant :

Concentration de plomb en	Nombre de logements	Centre de	Produit
microgrammes par litre	n _i	classe x _i	n _i . x _i
[0; 25[150		
[25 ; 50[42		
[50 ; 75[58		
[75 ; 100[27		
[100 ; 125[23		
[125 ; 150[55		
[150 ; 200[35		
Total			

1) Compléter le tableau.


2) Calculer la moyenne de cette série statistique. Exprimer le résultat arrondi à 0,1.

- 3) Actuellement l'eau est considérée comme potable si la concentration de plomb est inférieure à 50 microgrammes par litre. Quel est le pourcentage de logements dont l'eau est considérée comme potable ? Exprimer le résultat arrondi à l'unité.
- 4) En 2003 la norme sera ramenée à un maximum de 25 microgrammes par litre. Calculer le pourcentage de logements qui ne seront pas aux normes. Arrondir le résultat à l'unité. Rédiger une phrase pour répondre à la question.


Partie Sciences Physiques:

Exercice N°5: (4 points)

Voici l'étiquette se trouvant à l'intérieur d'une boite de papier pH.

Pour une expérience en chimie, on dispose au départ des récipients suivants :

1) A l'aide d'une baguette de verre on prélève une goutte de la solution A et on la dépose sur un morceau de papier pH. Le papier pH devient rouge.

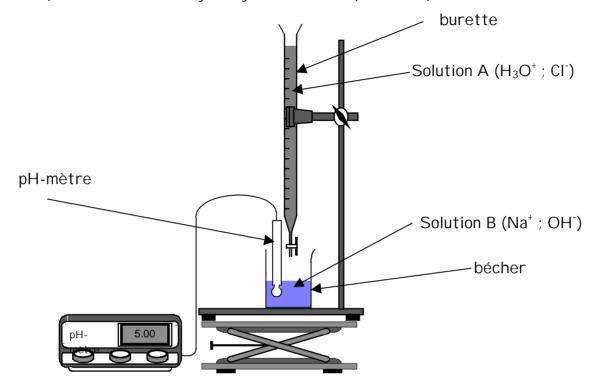
<u>Compléter</u>: Solution A: pH =

Cocher la case correspondant à la réponse choisie : la solution A est :

£ Acide

£ Basique

£ Neutre


2) A l'aide d'une autre baguette de verre on prélève une goutte de la solution B et on la dépose sur un autre morceau de papier pH. Le papier pH devient violet clair.

<u>Compléter</u>: Solution B: pH =

Cocher la case correspondant à la réponse choisie : la solution B est :

£ Acide £ Basique £ Neutre

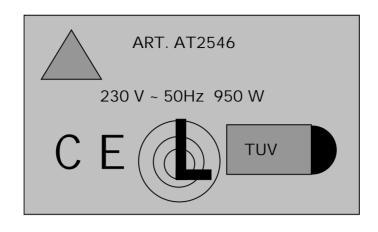
3) A l'aide d'une burette, on verse lentement la solution aqueuse de chlorure d'hydrogène (H₃O⁺ ; Cl⁻) dans la solution d'hydroxyde de sodium (Na⁺ ; OH⁻).

Le pH de la solution contenue dans le bécher est mesuré en permanence par un pH-mètre électronique.

- a) A un moment précis, le pH est neutre. Quelle est la valeur du pH?
- b) Compléter l'équation bilan de cette réaction.

(.....;) + (.....;) à (.....;) +

4) Calculer la masse molaire de l'hydroxyde de sodium (Na+; OH-)


Données: M(H) = 1 g/mol; M(Na) = 23 g/mol; M(Cl) = 35,5 g/mol; M(O) = 16 g/mol

- 5) Sachant que la solution B a été préparée avec 3 g d'hydroxyde de sodium dissous dans 0.5 litre d'eau.
 - a) Calculer le nombre n de moles d'hydroxyde de sodium contenus dans la solution B.
 - b) Calculer en mol/L la concentration molaire c de cette solution.

Formule : $c = \frac{n}{v}$

Exercice N°6: (3,5 points)

Sur un stérilisateur à biberons figure l'étiquette suivante :

- 1) Que signifient les indications (grandeurs et unités)
- i 230 V:
- i 950 W:
- i 50 Hz:
- 2) Quelle est l'intensité du courant qui traverse cet appareil en fonctionnement normal ? Exprimer ce résultat arrondi au dixième.
- 3) Calculer la quantité d'énergie consommée en un mois de 30 jours, si le stérilisateur fonctionne deux heures trente minutes par jour. Exprimer ce résultat en kilowattheures.

Formulaire: P = U.I; U = R.I; W = P.t

Exercice N°7: (2,5 points)

La masse d'un lit d'hôpital et de son malade est de 120 kg.

1) Calculer l'intensité du poids de l'ensemble. (On prendra g = 10 N/kg)

L'aire de la surface de contact totale S des 4 roues est de 0,024 m².

2) Calculer la pression p en pascals exercée par les roues du lit sur le sol.

Formulaire: P = m.g ; $p = \frac{F}{g}$

3) Compléter le tableau des caractéristiques du poids de l'ensemble.

	Point	Droite d'action	Sens	Intensité
		Di orte d'action	3013	Titterisite
	d'application			
Poids				

4) En prenant comme origine le point G ci-dessous, tracer le vecteur force représentant le poids de l'ensemble. (Échelle : 1 cm à 200 N)

+ G

Formulaire BEP SANITAIRE ET SOCIAL

I dentités remarquables

$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$
 $(a + b)(a - b) = a^2 - b^2$

Puissances d'un nombre

$$(ab)^{m} = a^{m}b^{m}$$

 $a^{m+n} = a^{m}a^{n}$
 $(a^{m})^{n} = a^{mn}$

Racines carrées

$$\frac{\sqrt{ab}}{\sqrt{ab}} = \sqrt{a}\sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Suites arithmétiques

Terme de rang 1 : U_1 ; raison : r Terme de rang n : $U_n = U_{n-1} + r$

$$U_n = U_{n-1} + r$$

 $U_n = U_1 + (n - 1)r$

Suites géométriques

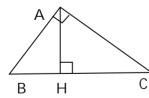
Terme de rang 1 : U_1 ; raison : \mathfrak{q}

Terme de rang n :

$$U_n = U_{n-1}q$$
$$U_n = U_1q^{n-1}$$

Statistiques

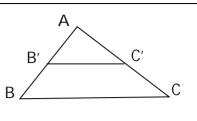
Moyenne
$$\overline{\mathbf{x}} = \frac{n_1 x_1 + n_2 x_2 + ... + n_p xp}{\mathbf{N}}$$


Ecart type S

$$S^{2} = \frac{n_{1}(x_{1} - \overline{x})^{2} + n_{2}(x_{2} - \overline{x})^{2} + ... + n_{p}(x_{p} - \overline{x})^{2}}{N}$$

$$= \frac{n_{1}x_{1}^{2} + n_{2}x_{2}^{2} + ... + n_{p}x_{p}^{2}}{N} - \overline{x}^{2}$$

Relation métrique dans le triangle rectangle


$$AB^2 + AC^2 = BC^2$$

 $AH.BC = AB.AC$

$$\sin \hat{B} = \frac{AC}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$

Énoncé de Thalès (relatif au traingle)

Si (BC) // (B'C')
Alors
$$\frac{AB}{AB'} = \frac{AC}{AC'}$$

Position relative de deux droites

Les droites d'équations

y = ax + b et y = a'x + b' sont:

- parallèles si et seulement si a = a'
- orthogonales si et seulement si aa' = 1

Calculs vectoriels dans le plan

$$\begin{vmatrix} r \\ v \end{vmatrix} x & ; \quad r' \\ y' & ; \quad v' + v' \end{vmatrix} x + x' & ; \quad r \\ y + y' & ; \quad r \\ ||v|| = \sqrt{x^2 + y^2}$$

Calculs d'intérêts

C: Capital; t taux périodique; n nombre de périodes;

A : Valeur acquise après n périodes

Intérêts simples Intérêts composés

$$I = Ctn$$
 $A = C(1 + t)^n$ $A = C + I$

Calcul d'aires dans le plan

Aire A d'un disque : A = $\frac{p \cdot D^2}{4}$

D = diamètre du disque

Aire A d'un triangle A = $\frac{1}{2}$ x B x h

B = base du triangle

h = hauteur du triangle